Alkynyl and poly-ynyl derivatives of carbon-tricobalt clusters

Maryka Gaudio ${ }^{\text {a }}$, Brian K. Nicholson ${ }^{\text {c }}$, Nancy Scoleri ${ }^{\text {a }}$, Brian W. Skelton ${ }^{\text {d }}$, Allan H. White ${ }^{\text {d }}$, Natasha N. Zaitseva ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
${ }^{\mathrm{b}}$ Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, Krasnoyarsk 660049, Russia
${ }^{\text {c }}$ Department of Chemistry, University of Waikato, Hamilton, New Zealand
${ }^{\text {d }}$ Chemistry M313, SBBCS, University of Western Australia, Crawley, WA 6009, Australia

Received 3 July 2006; received in revised form 2 August 2006; accepted 2 August 2006
Available online 12 August 2006

Abstract

A series of alkynyl-tricobalt carbonyl clusters, $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{C}_{n} \mathrm{R}\right)(\mu$-dppm $)(\mathrm{CO})_{7}\left[\mathrm{R}=\mathrm{Bu}^{t}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}, \mathrm{SiMe}_{3}, \mathrm{Fc}, \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]$ containing three, five or seven carbons in the chain, have been prepared by elimination of phosphine-gold(I) halides in reactions between $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ and $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)$ or between $\left.\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CAu}^{2} \mathrm{PR}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\left(\mathrm{R}=\mathrm{Ph}\right.$, tol) and $\mathrm{IC} \equiv \mathrm{CR}^{\prime}$ $\left(\mathrm{R}^{\prime}=\mathrm{SiMe}_{3}, \mathrm{Fc}\right)$.The use of poly-substituted arenes or ferrocenes has enabled preparation of the complexes $1,4-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm})-\right.$ $\left.\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{X}-5(\mathrm{X}=\mathrm{H}, \mathrm{Br}), \quad 1,3,5-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ and $1,1^{\prime}-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{Fc}^{\prime}$ $\left[\mathrm{Fc}^{\prime}=\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\right)_{2}\right]$. The X-ray determined molecular structures of 12 of the complexes are reported. © 2006 Published by Elsevier B.V.

Keywords: Carbon-tricobalt cluster; Alkyne; Poly-yne; X-ray structure; Gold

1. Introduction

Current interest in metal complexes containing metalligand centres end-capping carbon chains derives in part from their potential as models for molecular wires or as components of molecular-scale electronic devices and memories and for their non-linear optical properties [1]. Synthetic methods have used synthons derived from alkynes or poly-ynes, in which the substituent-free carbon chains are already present. As a result, the majority of known compounds have even-numbered carbon chains [2-4].

The formation of odd-numbered chains is dependent on methods which have an odd-numbered carbon precursor, either being converted to a C_{n} chain by subsequent

[^0]reactions, or as a component in an appropriate coupling reaction. Notable examples include $\left[\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{M}\right\}\right.$ $\left.=\mathrm{C}=\mathrm{C}=\mathrm{C}=\left\{\mathrm{M}(\mathrm{CO})_{2} \mathrm{Tp}^{*}\right\}\right]^{2+}$ and $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{M}\right\} \equiv \mathrm{CC} \equiv$ $\mathrm{C}\left\{\mathrm{M}^{\prime}(\mathrm{O})_{2} \mathrm{Tp}^{*}\right\}\left(\mathrm{M}, \mathrm{M}^{\prime}=\mathrm{Mo}, \mathrm{W}\right)[5],\left[\left\{\mathrm{Cp}^{\prime}(\mathrm{OC})_{2} \mathrm{Mn}\right\}-\right.$ $\left.\mathrm{CCC}\left\{\operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{Cp}^{*}\right\}\right]^{+}[6]$ and $\left\{\left(\mathrm{Bu}^{t} \mathrm{O}\right)_{3} \mathrm{~W}\right\} \equiv \mathrm{CC} \equiv$ $\mathrm{C}\left\{\operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{Cp}^{*}\right\}$ [7]. We and others have considered an approach to this type of complex using a precursor in which a carbyne ligand, $\equiv \mathrm{CR}$, is attached to a metal centre. Recent examples have used the Group 6 complexes $\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}\left[\mathrm{R}=\right.$ halogen, $\mathrm{SiMe}_{3} ; \mathrm{M}=$ $\left.\mathrm{Mo}, \mathrm{W} ; \mathrm{Tp}^{\prime}=\mathrm{BH}(\mathrm{pz})_{3}(\mathrm{Tp}), \mathrm{BH}(\mathrm{dmpz})_{3}\left(\mathrm{Tp}^{*}\right)\right][8]$ or cluster-bonded halocarbynes, such as $\mathrm{M}_{3}(\mu-\mathrm{CR})(\mathrm{CO})_{9}$ $\left(\mathrm{M}_{3}=\mathrm{Ru}_{3}(\mu-\mathrm{H})_{3}[9], \mathrm{Os}_{3}(\mu-\mathrm{H})_{3}[9], \mathrm{Co}_{3}[10]\right)$.

The trigonal prismatic CCo_{3} cluster has been known since the late 1950s [11] and its extensive chemistry has been reviewed on several occasions [12-17]. Attachment to unsaturated groups such as alkynes and diynes was first described in 1970 [18-20]. Common routes to the
formation of the carbyne- $\mathrm{C}(\mathrm{sp})$ bond include the CadiotChodkiewicz, Sonogashira and related reactions [19]. In some instances, appropriate Grignard or Lewis-acid $\left(\mathrm{AlCl}_{3}\right)$-induced coupling reactions between alkynes and $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mathrm{CO})_{9}$ have been employed. It was early noted that with metal complexes the amine solvent commonly used often resulted in competing degradation of the cluster and conversion to other unwanted cluster products [19].

Some time ago, we described a modification whereby reactions of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu$-dppm $)(\mathrm{CO})_{7} \quad(\mathbf{1})$, chosen because the presence of the edge-bridging diphosphine ligand prevents break-up of the CCo_{3} cluster, with phos-phine-gold(I) alkynyls resulted in elimination of $\operatorname{AuBr}\left(\mathrm{PR}_{3}\right)$ and formation of the $\mathrm{C}-\mathrm{C}$ bonded product in high yields [21]. We had reasoned that the presence of the dppm ligand, bridging one of the Co-Co edges, would serve to prevent cluster degradation, while the mild condi-
tions of the reaction, in which no base is required, would prevent the formation of unwanted by-products. While our first accounts concentrated on the formation of carbon chains end-capped by the Co_{3} cluster and a second metalcontaining group [10], we have also extended these reactions to the synthesis of a range of Co_{3} clusters containing more conventional groups as described below.

2. Results and discussion

Reactions of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ (1) [22] with phosphine-gold(I) alkynyls proceed readily in solvents such as thf under mild conditions (r.t., hours) (Scheme 1). Conventional work-up involving chromatography on silica gel affords the alkynyl-tricobaltcarbon clusters in high yield as dark coloured crystals. To exemplify this reaction, we have used $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)$, or occasionally the $\mathrm{P}(\text { tol })_{3}$ analogue to improve solubility, which

Scheme 1.

(4)
(6)

Scheme 2.
has allowed the complexes $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CR}\right)$ -$(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ to be obtained $\left[\mathrm{R}=\mathrm{Bu}^{t}(\mathbf{2}, 47 \%)\right.$, Ph (3, 91%), $\mathrm{SiMe}_{3}(\mathbf{4}, 86 \%)$, $\left.\mathrm{Fc}(5,91 \%)\right]$. The co-product $\mathrm{AuBr}\left(\mathrm{PR}_{3}^{\prime}\right)\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right.$, tol) can be easily recovered and recycled. The IR spectra of these complexes contain weak $v(\mathrm{C} \equiv \mathrm{C})$ bands at ca. $2130 \mathrm{~cm}^{-1}$ and medium to strong $v(\mathrm{CO})$ absorptions between 2061 and $1966 \mathrm{~cm}^{-1}$. In addition to common signals at $\delta 3.44$ and 4.49 and between $\delta 6.5$ and 8.0 arising from the dppm ligand, the ${ }^{1} \mathrm{H}$ NMR spectra contain other resonances characteristic of the R groups present. Limited solubility restricted the availability of ${ }^{13} \mathrm{C}$ NMR spectra, but in 2 , signals at $\delta 101.14$ and 121.95 can be assigned to two carbons of the C_{3} moiety. That of the carbyne carbon, attached to three cobalt atoms, is broadened by interaction with the ${ }^{59} \mathrm{Co}$ quadrupole and is not resolved in all spectra [23,24]. The ${ }^{31} \mathrm{P}$ NMR spectra contain a single resonance at δ ca. 35. The formulations of these complexes are confirmed by elemental analyses and by their electrospray mass spectra (ES MS), which usually contain molecular ions or appropriate adduct ions. As described further below, the molecular structures of 12 of the complexes have been determined by single-crystal X-ray diffraction studies.

The elimination reaction also proceeds between phos-phine-gold(I) derivatives of the alkynyl-tricobalt cluster and appropriate $\mathrm{C}\left(\mathrm{sp}\right.$ or $\left.\mathrm{sp}^{2}\right)$-I bonds. Thus, the reaction between $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(6)$, itself prepared from the SiMe_{3} derivative $\mathbf{4}$ and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ in the presence of sodium methoxide, and $1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ afforded two complexes which were characterised as $\mathrm{Co}_{3}\left(\mu_{3}-\right.$ $\left.\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(7)$ which is green, and orange-brown $1,4-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (8) (Scheme 2). Similarly, the reaction between $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mathrm{PPh}_{3}\right)$ and 1 afforded $\mathrm{Co}_{3}\left(\mu_{3}-\right.$ $\left.\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)(\mu$-dppm $)(\mathrm{CO})_{7}(\mathbf{9})$. These complexes were readily separated by preparative t.1.c. and identified by elemental analysis and from their ES MS. The other spectroscopic properties were similar to those found for the related phenyl complex [22a].

Extension of the reaction to $1,3,5-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuC} \equiv \mathrm{C}\right\}_{3^{-}}$ $\mathrm{C}_{6} \mathrm{H}_{3}$ enabled preparation of the tris-cluster complex $1,3,5-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{1 0})$ in 50% yield. This compound has a similar $v(\mathrm{CO})$ spectrum to the complexes described above, while the ${ }^{13} \mathrm{C}$ NMR spectrum contains resonances at $\delta 108.92$ and 112.76 from two of the C_{3} chain carbons. Further characterisation results from the ES MS which contains a molecular ion at $m / z 2454$, and by an X-ray structural determination (see below). On one occasion, we isolated and crystallographically characterised the bis-cluster $1,3-\left\{(\mathrm{OC})_{7}(\mu-\right.$ $\left.\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}-5$ (11) from an analogous reaction in which the bromoaryl-diyne $1,3-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right.$ $\mathrm{AuC} \equiv \mathrm{C}\}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}-5$ was inadvertently used. Its spectroscopic properties were similar to those found for 9 , with the exception of the negative ion ES MS, in which the peak at a $m / z 1741$ corresponds to $[\mathrm{M}-\mathrm{H}]^{-}$.

In addition to 8 , which contains two Co_{3} clusters end-capping the organic ligand, we have prepared $1,1^{\prime}$ -$\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{Fc}^{\prime} \quad\left[\mathbf{1 2}, \quad \mathrm{Fc}^{\prime}=\mathrm{Fe}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}-\right)_{2}\right]$ in 96% yield from the related reaction between $1,1^{\prime}-\mathrm{Fc}^{\prime}\left\{\mathrm{C} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]_{2} \quad\right.$ and $\quad \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})-$ $(\mathrm{CO})_{7}$. This dark red complex has an IR $v(\mathrm{CO})$ spectrum similar to those of the other complexes described above, together with a $v(\mathrm{C} \equiv \mathrm{C})$ band at $2122 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum has two multiplets at $\delta 4.40$ and 4.53 (4 H each) assigned to the $\mathrm{C}_{5} \mathrm{H}_{4}$ protons of the ferrocene nucleus, while the ES MS of a solution containing NaOMe has $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 1793$.

Related complexes with C_{5} chains, such as $\mathrm{Co}_{3}\left(\mu_{3}{ }^{-}\right.$ $\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CR})(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\left[\mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{Au}\left(\mathrm{PPh}_{3}\right), \mathrm{Fc}\right]$ have been described earlier [10]. Extension to systems containing C_{7} chains was easily achieved in reactions between $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad[10]$ and $\mathrm{IC} \equiv \mathrm{CSiMe}_{3}$ [25] or $\mathrm{IC} \equiv \mathrm{CFc}$ [26] which gave $\mathrm{Co}_{3}\left\{\mu_{3}-\right.$ $\left.\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{R}\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad\left[\mathrm{R}=\mathrm{SiMe}_{3}(\mathbf{1 3}, 54 \%), \quad \mathrm{Fc}\right.$ $(14,87 \%)]$ and the further conversion of $\mathbf{1 3}$ by treatment with NaOMe and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ gave $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3^{-}}\right.$ $\left.\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{1 5})$ in 75% yield (Scheme 3). The complex $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}$ (μ-dppm)$(\mathrm{CO})_{7}$ has been converted to $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{Ph}\right\}$ -$(\mu$-dppm $)(\mathrm{CO})_{7}(\mathbf{1 6})$ in 60% yield by sequential reactions with iodine and $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)$, without isolation of the presumed intermediate iododiynyl complex $\mathrm{Co}_{3}\left(\mu_{3^{-}}\right.$ $\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CI})(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$.

Complexes 13-16 were initially characterised by elemental microanalyses and from their ES MS. Other spectroscopic properties were also in agreement with the proposed structures. These complexes have similar IR spectra to their shorter chain analogues, although for $\mathbf{1 4}$ and 16, two $v(\mathrm{C} \equiv \mathrm{C})$ absorptions are found. In the NMR spectra of 13 , the SiMe_{3} group gives rise to a singlet at $\delta_{\mathrm{H}} 0.26$, while for 14 , resonances at $\delta_{\mathrm{H}} 4.28,4.30$ and 4.56 and δ_{C} $70.35,69.76$ and 72.35 arise from the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ rings of the Fc group. We assign seven resonances found between $\delta 63.38$ and 99.03 in the ${ }^{13} \mathrm{C}$ NMR spectrum to six of the C_{7} carbons and the ipso carbons of the Ph groups. In the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4}$ and $\mathbf{1 5}$, resonances between $\delta 57$ and 99 are assigned to five of the seven chain carbons, the $\mathrm{Co}_{3} \mathrm{C}$ atom again not being observed.

3. Structural studies

The molecular structures of 12 of the complexes described above have been determined by single-crystal X-ray diffraction studies. Figs. 1-12 contain plots of single molecules of each complex, that of $\mathbf{5}$ showing the two different conformers found in the unit cell. All contain as a

Fig. 1. Plot of a molecule of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CBu}^{t}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ (2).
common structural feature the $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}-\right)(\mu-$ $\mathrm{dppm})(\mathrm{CO})_{7}$ fragment (the molecule of $\mathbf{1 2}$ is centrosymmetric), as has been found in several other related complexes described by us [10,27] and others [28-31] on previous occasions. Atom $\mathrm{C}(1)$ is attached to all three metal atoms of the triangular Co_{3} cluster, of which one edge $[\mathrm{Co}(1)-$ $\mathrm{Co}(2)]$ is bridged by the dppm ligand. In all cases except 2 and $\mathbf{4}$ (which are isomorphous), the methylene bridge of the dppm ligand lies 'endo' to the pendant alkyne group, whereas it is 'exo' in the two exceptions. Nevertheless, the ranges encompassed by the various bond distances and angles extend over many standard deviations (see Table 1), although it is not evident that any particular structural or electronic feature can account for the differences.

In some instances, the dppm-bridged $\mathrm{Co}(1)-\mathrm{Co}(2)$ bond is significantly different from the other two Co-Co separations, although when averaged over the present examples, all distances are identical ($2.48 \AA$), with ranges for

Fig. 2. Plot of a molecule of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CPh}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ (3).

Fig. 3. Plot of a molecule of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{4})$.
$\mathrm{Co}(1)-\mathrm{Co}(2)$ of between 2.4624 and $2.5144 \AA$ and for $\mathrm{Co}(1,2)-\mathrm{Co}(3)$ of 2.4651 and $2.5085 \AA$. The $\mathrm{Co}-\mathrm{P}$ bonds to the dppm ligand average $2.197 \AA$ (range $2.177-$ $2.2154 \AA$). Only in the interactions of the Co_{3} cluster with the capping $\mathrm{C}(1)$ atom are differences found, with $\mathrm{Co}(1,2)-$ $\mathrm{C}(1)$ averaging $1.905 \AA$ (range $1.888-1.928 \AA$) and $\mathrm{Co}(3)-$ $\mathrm{C}(1)$ averaging $1.937 \AA$ (range $1.914-1.978 \AA$), resulting from the increased electron density at $\mathrm{Co}(1,2)$ and increased back-bonding into the corresponding $\mathrm{Co}-\mathrm{C}$ MOs [32].

Fig. 4. Plots of molecules 1 and 2 of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CFc}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{5})$.

The carbon chains show the expected alternation of $\mathrm{C}-\mathrm{C}$ bond lengths, with $\mathrm{C}(1)-\mathrm{C}(2)$ ranging between 1.381 and $1.422 \AA$ (av. $1.399 \AA$) and $\mathrm{C}(2)-\mathrm{C}(3)$ being shorter at $1.213 \AA$ (av.), range $1.201-1.230 \AA$, consistent with its being a $\mathrm{C} \equiv \mathrm{C}$ triple bond. As expected, angles at $\mathrm{C}(1,2)$ are close to linear, averaging 177.2° (range $174.3-179.8^{\circ}$) and 174.7 (range $167.9-179.3^{\circ}$), respectively. In triyne complexes $\mathbf{1 1}$ and 12, separations further along the C_{7} chain are consistent with this formulation, with $\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{C}(6)-$ $\mathrm{C}(7)$ triple bonds $[1.217,1.203(4) \AA$ in 11, 1.226, $1.209(7)$ in 12] and $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(5)-\mathrm{C}(6)$ single bonds [1.355, $1.366(4) \AA$ in 11, 1.343, 1.358(7) in 12]. In these two examples, a trend for shorter $\mathrm{C} \equiv \mathrm{C}$ triple bonds further along the

Fig. 5. Plot of a molecule of $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{6})$.

Fig. 6. Plot of a molecule of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{I}-4\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(7)$.

Fig. 7. Plot of a molecule of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}-4\right)(\mu$-dppm $)$ $(\mathrm{CO})_{7}(9)$.

Fig. 8. Plot of a molecule of $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left\{\mathrm{C} \equiv \mathrm{C}-\mu_{3}-\mathrm{C}\left[\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right]\right\}_{3}$ (10).

Fig. 9. Plot of a molecule of $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}\left\{\mathrm{C} \equiv \mathrm{C}-\mu_{3}-\mathrm{C}\left[\mathrm{Co}_{3}(\mu-\mathrm{dppm})-\right.\right.$ $\left.\left.(\mathrm{CO})_{7}\right]\right\}_{2}(11)$.
C_{n} chain from the Co_{3} cluster is evident, while the reverse occurs for the $\mathrm{C}-\mathrm{C}$ single bonds. The conformations of these two C_{7} chains can be described as a continuous bend, with total bending at the carbon atoms $\mathrm{C}(2-7), \Sigma$, being 19.4° (for 11) and 23.6° (for 12). Others have commented previously about the facile bending of $\mathrm{C}(\mathrm{sp})$ chains, the most probable explanation being found in intermolecular

Fig. 10. Plot of a molecule of $1,1^{\prime}-\mathrm{Fc}^{\prime}\left\{\mathrm{C} \equiv \mathrm{C}-\mu_{3}-\mathrm{C}\left[\mathrm{Co}_{3}(\mu \text {-dppm })(\mathrm{CO})_{7}\right]\right\}_{2}$ (12).

Fig. 11. Plot of a molecule of $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{SiMe}_{3}\right\}(\mu$-dppm $)(\mathrm{CO})_{7}$ (13).

Fig. 12. Plot of a molecule of $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{Ph}\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{1 6})$.
interactions within the cell and the facile bending modes of $\mathrm{C}(\mathrm{sp})$ chains [33].

Other features of the structures are consistent with the groups found at the other end of the carbon chain, with $\mathrm{C}(3)-\mathrm{X}$ distances $[\mathrm{X}=\mathrm{Au} 1.983(4), \mathrm{C}(301)$ of aromatic groups $1.405-1.440(5), \mathrm{Si} 1.845(6) \AA]$. Despite pseudo-
symmetry in their disposition in the cell, the two independent molecules of $\mathbf{5}$ have different conformations of the Fc group, with the Fe-mid-ring vectors being approximately parallel and perpendicular to the $\mathrm{Co}(1)-\mathrm{Co}(2)$ vector, no doubt imposed by packing requirements of the Ph and Fc groups therein.

4. Experimental

4.1. General

All reactions were carried out under dry nitrogen, although normally no special precautions to exclude air were taken during subsequent work-up. Common solvents were dried, distilled under argon and degassed before use. Separations were carried out by preparative thin-layer chromatography on glass plates $\left(20 \times 20 \mathrm{~cm}^{2}\right)$ coated with silica gel (Merck, 0.5 mm thick).

4.2. Instruments

IR spectra were obtained on a Bruker IFS28 FT-IR spectrometer. Spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained using a 0.5 mm path-length solution cell with NaCl windows. Nujol mull spectra were obtained from samples mounted between NaCl discs. NMR spectra were recorded on a Varian 2000 instrument (${ }^{1} \mathrm{H}$ at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $75.47 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 121.503 MHz). Unless otherwise stated, samples were dissolved in CDCl_{3} contained in 5 mm sample tubes. Chemical shifts are given in ppm relative to internal tetramethylsilane for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and external $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ NMR spectra. Electrospray mass spectra (ES MS) were obtained from samples dissolved in MeOH unless otherwise indicated. Solutions were injected into a Varian Platform II spectrometer via a 10 ml injection loop. Nitrogen was used as the drying and nebulising gas. Chemical aids to ionisation were used [34]. Elemental analyses were by CMAS, Belmont, Vic., Australia.

4.3. Reagents

$\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ [27], $\mathrm{IC} \equiv \mathrm{CFc}$ [26], AuCl $\left(\mathrm{PR}_{3}\right)\left(\mathrm{R}=\mathrm{Ph}\right.$; tol made similarly) [35], and $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CR}^{\prime}\right)$ $\left(\mathrm{PR}_{3}\right) \quad\left(\mathrm{R}^{\prime}=\mathrm{Bu}^{t}, \quad \mathrm{Ph}, \quad \mathrm{SiMe}_{3}, \mathrm{Fc}\right)$ and $\left\{\mathrm{Au}\left(\mathrm{PR}_{3}\right)\right\}_{2}(\mu-$ $\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}$) were obtained as previously described [36,37].

4.4. Preparation of $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mathrm{PPh}_{3}\right)$

Sodium ($30 \mathrm{mg}, 1.3 \mathrm{mg}$ atom) was added to a solution of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(91 \mathrm{mg}, 0.184 \mathrm{mmol})$ in $\mathrm{MeOH}(28 \mathrm{ml})$. After hydrogen evolution had ceased, a solution of $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}(37 \mathrm{mg}, \quad 0.183 \mathrm{mmol})$ in MeOH $(2 \mathrm{ml})$ was added dropwise. After stirring at r.t. for 12 h , solvent was removed and the residue was extracted with benzene. Concentration of the extract to 3 ml and diffusion

Table 1
Selected bond parameters for some alkynyl- $\mathrm{Co}_{3} \mathrm{C}$ complexes

Bond	2	3	4	$5^{\text {a }}$
Distances (\AA)				
$\mathrm{Co}(1)-\mathrm{Co}(2)$	2.5103(6)	2.4794(4)	2.4924(6)	2.465, 2.460(1)
$\mathrm{Co}(1)-\mathrm{Co}(3)$	$2.5085(4)$	2.4867(5)	2.4719 (5)	2.468, 2.485(1)
$\mathrm{Co}(2)-\mathrm{Co}(3)$	2.4989(4)	2.4831(4)	2.4651(4)	2.484, 2.486(1)
$\mathrm{Co}(1)-\mathrm{P}(1)$	2.2154(5)	$2.1938(6)$	2.1896(6)	2.177, 2.195(2)
$\mathrm{Co}(2)-\mathrm{P}(2)$	2.2118(4)	2.2018(6)	2.1842(6)	2.189, 2.191(2)
$\mathrm{P}(1)-\mathrm{C}(0)$	1.862(1)	1.832(2)	1.836(2)	1.842, 1.839(7)
$\mathrm{P}(2)-\mathrm{C}(0)$	1.858(2)	$1.830(2)$	1.832(2)	1.843, 1.843(7)
$\mathrm{Co}(1)-\mathrm{C}(1)$	1.918(2)	1.896(2)	1.895(2)	1.910, 1.903(6)
$\mathrm{Co}(2)-\mathrm{C}(1)$	$1.928(1)$	$1.906(2)$	1.898(2)	1.895, 1.911(6)
$\mathrm{Co}(3)-\mathrm{C}(1)$	$1.978(1)$	$1.932(2)$	1.943(2)	1.914, 1.940(8)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.422(2)	1.403(3)	1.403(3)	1.409, 1.384(10)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.225(2)$	$1.209(3)$	1.217(3)	1.206, 1.205(10)
$\mathrm{C}(3)-\mathrm{X}[\mathrm{X}]$	1.494(2) [C(4)]	1.433(3) [C(301)]	$1.824(2)$ [Si]	$1.405,1.433(10)[\mathrm{C}(301)]$
Angles (${ }^{\circ}$)				
$\mathrm{Co}(3)-\mathrm{Co}(1)-\mathrm{P}(1)$	153.68(2)	146.77(2)	154.05(2)	148.49, 147.14(6)
$\mathrm{Co}(3)-\mathrm{Co}(2)-\mathrm{P}(2)$	155.67(1)	147.3(2)	155.00(2)	147.26, 147.88(6)
$\mathrm{P}(1)-\mathrm{C}(0)-\mathrm{P}(2)$	106.83(7)	110.5(1)	107.3(1)	108.2, 108.9(4)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	137.0(1)	139.2(2)	136.2(2)	130.6, 137.8(5)
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	134.1(1)	126.0(2)	134.2(1)	137.0, 126.4(4)
$\mathrm{Co}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	122.9(1)	128.3(2)	123.1(1)	126.5, 130.6(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	176.7(2)	175.8(2)	177.9(2)	179.8, 177.1(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{X}[\mathrm{X}]$	177.3(2) [C(4)]	175.9(2) [C(301)]	174.7(2) [Si]	178.8, 174.1(8) [C(301)]
Bond	$6^{\text {b }}$	$7{ }^{\text {b }}$	$9^{\text {c }}$	$10^{\text {d }}$
Distances (\AA)				
$\mathrm{Co}(1)-\mathrm{Co}(2)$	2.4628(7)	2.4760 (5)	2.4870(7)	2.467, 2.463, 2.484(5)
$\mathrm{Co}(1)-\mathrm{Co}(3)$	2.4743(8)	2.4804(7)	2.4802(7)	2.486, 2.469, 2.475(5)
$\mathrm{Co}(2)-\mathrm{Co}(3)$	2.4982(7)	2.4884(8)	2.4801(7)	2.505, 2.489, 2.480(5)
$\mathrm{Co}(1)-\mathrm{P}(1)$	2.192(1)	2.194(1)	2.203(1)	2.190, 2.194, 2.200(9)
$\mathrm{Co}(2)-\mathrm{P}(2)$	2.202(1)	2.203(1)	2.200(1)	2.193, 2.205, 2.207(9)
$\mathrm{P}(1)-\mathrm{C}(0)$	$1.825(3)$	1.839 (3)	1.824(3)	$1.84,1.83,1.80(3)$
$\mathrm{P}(2)-\mathrm{C}(0)$	1.836(6)	1.849 (3)	1.831(4)	1.87, 1.84, 1.84(3)
$\mathrm{Co}(1)-\mathrm{C}(1)$	1.907(3)	1.907 (3)	1.927 (4)	$1.96,1.95,1.93$ (2)
$\mathrm{Co}(2)-\mathrm{C}(1)$	$1.910(4)$	1.921(3)	1.888(4)	1.88, 1.86, 1.92(3)
$\mathrm{Co}(3)-\mathrm{C}(1)$	$1.928(4)$	1.934(3)	$1.935(4)$	1.96, 1.92, 1.98(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.401(5)	1.394(4)	1.394(5)	1.38, 1.41, 1.39(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.213(6)	$1.214(5)$	$1.213(5)$	$1.24,1.20,1.17(5)$
$\mathrm{C}(3)-\mathrm{X}[\mathrm{X}]$	$1.983(4)[\mathrm{Au}]$	$1.436(5)[\mathrm{C}(301)]$	1.434(5) [C(301)]	$1.44,1.42,1.43(5)[\mathrm{C}(30 \mathrm{n})]$
Angles (${ }^{\circ}$)				
$\mathrm{Co}(3)-\mathrm{Co}(1)-\mathrm{P}(1)$	148.08(3)	145.62(3)	149.82(3)	147.1, 146.2, 146.9(2)
$\mathrm{Co}(3)-\mathrm{Co}(2)-\mathrm{P}(2)$	143.48(4)	147.66(3)	148.42(3)	146.5, 147.4, 149.5(3)
$\mathrm{P}(1)-\mathrm{C}(0)-\mathrm{P}(2)$	110.4(2)	110.3(2)	109.2(2)	107, 108. 110(2)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	133.4(3)	136.1(2)	124.2(3)	129, 127, 130(2)
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	133.5(2)	127.8(2)	138.8(3)	140, 139, 139(2)
$\mathrm{Co}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	128.0(3)	131.0(2)	130.9(3)	126, 128, 128(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	177.3(4)	175.1(5)	174.3(4)	177, 178, 173(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{X}[\mathrm{X}]$	$171.3(3)[\mathrm{Au}]$	171.4(4) [C(301)]	167.9(4)	178, 179, 175(3)
Bond	$11^{\text {e }}$	12	$13^{\text {f }}$	16^{g}
Distances (A)				
$\mathrm{Co}(1)-\mathrm{Co}(2)$	2.4789, 2.5144(7)	2.4788(6)	2.4624(6)	2.4853(5)
$\mathrm{Co}(1)-\mathrm{Co}(3)$	2.4760, 2.4779(7)	$2.4738(6)$	2.4612(6)	2.4922(5)
$\mathrm{Co}(2)-\mathrm{Co}(3)$	2.4654, 2.4728(7)	$2.4695(6)$	2.4853(7)	$2.4855(5)$
$\mathrm{Co}(1)-\mathrm{P}(1)$	2.192, 2.211(1)	2.1923(9)	2.179(1)	2.2023(7)
$\mathrm{Co}(2)-\mathrm{P}(2)$	2.189, 2.186(1)	$2.1915(9)$	2.210 (1)	$2.2136(7)$
$\mathrm{P}(1)-\mathrm{C}(0)$	1.826, 1.836(3)	$1.830(3)$	1.832(3)	1.830(2)
$\mathrm{P}(2)-\mathrm{C}(0)$	1.839, 1.829(3)	1.838(3)	1.842(4)	1.839(2)
$\mathrm{Co}(1)-\mathrm{C}(1)$	1.903, 1.893(3)	$1.905(3)$	1.903(4)	$1.911(2)$
$\mathrm{Co}(2)-\mathrm{C}(1)$	1.900, 1.895(3)	$1.895(3)$	1.903(4)	$1.905(2)$
$\mathrm{Co}(3)-\mathrm{C}(1)$	1.923, 1.951(4)	1.930 (3)	1.942(4)	1.937(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.405,1.405(5)$	$1.402(4)$	1.381(6)	$1.385(3)$

Table 1 (continued)

Bond	$\mathbf{1 1}^{\mathrm{e}}$	$\mathbf{1 2}$	$\mathbf{1 3}^{\mathrm{f}}$	$\mathbf{1 6}^{\mathrm{g}}$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.210,1.201(5)$	$1.209(4)$	$1.224(7)$	$1.230(3)$
$\mathrm{C}(3)-\mathrm{X}$	$1.431,1.440(5)[\mathrm{C}(301,305)]$	$1.419(4)[\mathrm{C}(301)]$	$1.343(7)[\mathrm{C}(4)]$	$1.355(4)[\mathrm{C}(4)]$
Angles $\left(^{\circ}\right)$				
$\mathrm{Co}(3)-\mathrm{Co}(1)-\mathrm{P}(1)$	$147.28,149.83(4)$	$149.97(3)$	$146.44(4)$	$148.25(4)$
$\mathrm{Co}(3)-\mathrm{Co}(2)-\mathrm{P}(2)$	$146.61,152.08(3)$	$147.49(3)$	$111.8(2)$	$149.24(2)$
$\mathrm{P}(1)-\mathrm{C}(0)-\mathrm{P}(2)$	$108.8,110.9(2)$	$108.1(1)$	$109.1(1)$	
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$130.6,134.7(3)$	$131.2(2)$	$129.1(2)$	
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$132.7,133.1(3)$	$135.2(2)$	$137.2(2)$	
$\mathrm{Co}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	$131.3,125.2(3)$	$128.1(2)$	$127.7(2)$	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$176.5,178.9(4)$	$178.2(3)$	$177.6(3)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{X}$	$179.3,178.1(4)[\mathrm{C}(301,305)]$	$175.8(3) \mathrm{C}(301)]$	$178.0(4)$	$174.1(3)[\mathrm{C}(4)]$

${ }^{\text {a }}$ For 5: Values for two independent molecules.
${ }^{\mathrm{b}}$ For 6: Au-P 2.271(1) $\AA, \mathrm{C}(3)-\mathrm{Au}-\mathrm{P} 175.4(1)^{\circ}$.
${ }^{\text {c }}$ For 7: C(304)-I 2.105(3) A.
${ }^{\mathrm{d}}$ For 9: C(304)-C(4) 1.431(6), $\mathrm{C}(4)-\mathrm{C}(5) 1.203(6), \mathrm{C}(5)-\mathrm{C}(501) 1.420(6) \AA$ A $\mathrm{C}(304)-\mathrm{C}(4)-\mathrm{C}(5) 177.6(5), \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(501) 177.4(5)^{\circ}$. For 10: Second and third entries are for second and third clusters involving $\operatorname{Co}(4-6), P(4,5), C(303,4-6)$ and $\operatorname{Co}(7-9), P(7,8), C(305,7-9)$.
${ }^{e}$ For 11: Second entries are values for second cluster involving $\mathrm{Co}(4-6), \mathrm{P}(4,5), \mathrm{C}(305,4-6) . \mathrm{C}(303)-\mathrm{Br} 1.895(3) \AA$.
${ }^{\mathrm{f}}$ For 13: C(4)-C(5) 1.226(7), C(5)-C(6) 1.358(7), C(6)-C(7) 1.209(7), C(7)-Si 1.845(6) A; C(3)-C(4)-C(5) 175.5(4), C(4)-C(5)-C(6) 175.7(4), C(5)-C(6)$\mathrm{C}(7)$ 178.3(4), $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Si} 175.9(4)^{\circ}$.
${ }^{\mathrm{g}}$ For 16: $\mathrm{C}(4)-\mathrm{C}(5) 1.217(4), \mathrm{C}(5)-\mathrm{C}(6) 1.366(4), \mathrm{C}(6)-\mathrm{C}(7) 1.203(4), \mathrm{C}(7)-\mathrm{C}(71) 1.437(4) \AA$; $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) 177.6(3), \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) 176.1(3), \mathrm{C}(5)-$ $\mathrm{C}(6)-\mathrm{C}(7) 176.8(3), \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(71) 178.4(3)^{\circ}$.
of heptane (3 ml) into the concentrated solution gave light yellow microcrystalline $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mathrm{PPh}_{3}\right)$ $(99.5 \mathrm{mg}, 83 \%$), which was washed with hexane and dried. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{AuP}(\mathrm{Mw}=660): \mathrm{C}, 61.82 ; \mathrm{H}, 3.64$. Found: C, 61.62; H, 3.57\%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2114 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.27-7.60\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{31} \mathrm{P}$ NMR: $\delta 42.6\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. ES-MS: (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 683,[\mathrm{M}+\mathrm{Na}]^{+}$.

4.5. Preparation of $1,3,5-\left\{\left(P h_{3} P\right) A u C \equiv C\right\}_{3} C_{6} H_{3}$

A modified literature method [38] was used. NaOMe (excess) in $\mathrm{MeOH}(4 \mathrm{ml})$ was added to a solution of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(202.7 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $1,3,5-\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv\right.$ C) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}(50 \mathrm{mg}, 0.137 \mathrm{mmol})$ in thf $/ \mathrm{MeOH}(30 \mathrm{ml} / 8 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ (ice-bath) and the mixture was allowed to warm to r.t. After stirring overnight, a white precipitate had separated from the pale yellow solution. Solvent was removed and the solid remaining was transferred to a sintered filter with $\mathrm{MeOH}(5 \mathrm{ml})$ and washed with more MeOH and hexane, and dried in air to give $1,3,5-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuC} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ $(181 \mathrm{mg}, 87 \%)$ as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.47-$ $7.59(\mathrm{~m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta 103.62(\mathrm{C} \equiv \mathrm{C}), 124.35\left(\mathrm{~s}, \mathrm{C}_{\text {ipso }}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 18.89-131.44(\mathrm{~m}, \mathrm{Ph}), 134.20,134.36\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)$. ${ }^{31} \mathrm{P}$ NMR: $\delta 49.3\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$.

4.6. Preparation of carbon-tricobalt complexes

4.6.1. $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CR}\right)(\mu-d p p m)(\mathrm{CO})_{7}$
4.6.1.1. $R=B u^{t}(2)$. A mixture of $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CBu}^{t}\right)\left(\mathrm{PPh}_{3}\right)$ $(64 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(100 \mathrm{mg}$, $0.12 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.2 \mathrm{mg}, \quad 0.006 \mathrm{mmol})$ and CuI $(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ in thf $(7 \mathrm{ml})$ was stirred at r.t. for 2 h . After removal of solvent, the residue was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by preparative t.1.c. (hexaneacetone $5 / 1$). The major brown band ($R_{\mathrm{f}} 0.41$) contained $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CBu}^{t}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(2)(47 \mathrm{mg}, 47 \%)$ which was isolated as dark brown crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{MW}=850)$: C , 55.06; H, 3.65. Found: C, $55.09 ; \mathrm{H}, 3.42 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $v(\mathrm{C} \equiv \mathrm{C}) 2131 \mathrm{vw} ; v(\mathrm{CO}) 2057 \mathrm{~s}, 2007 \mathrm{vs}, 1987$ (sh), 1966 (sh); (cyclohexane): $v(\mathrm{CO}) 2061 \mathrm{~s}, 2015 \mathrm{vs}, 2011 \mathrm{vs}, 1997 \mathrm{~m}$, 1984w, 1976m, 1960w. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right)$, $3.49,4.41(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 6.50-8.50(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}$ NMR: $\delta 30.33(\mathrm{~s}, \mathrm{Me}), 30.80\left(\mathrm{~s}, \mathrm{C}^{4}\right), 39.94[\mathrm{t}, J(\mathrm{CP})$ $\left.21.8 \mathrm{~Hz}, \mathrm{PCH}_{2}\right], 101.14\left(\mathrm{~s}, \mathrm{C}^{3}\right), 121.95\left(\mathrm{~s}, \mathrm{C}^{2}\right), 128.12-$ $137.49(\mathrm{~m}, \mathrm{Ph}), 202.43,209.83,231.35(3 \times \mathrm{s}, \mathrm{br}, \mathrm{CO}) .{ }^{31} \mathrm{P}$ NMR: $\delta 33.8$ (s, dppm). ES-MS (MeOH, m/z): $850, \mathrm{M}^{+}$.
4.6.1.2. $R=P h \quad$ (3). Method A: A mixture of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right) \quad(66 \mathrm{mg}, \quad 0.12 \mathrm{mmol}), \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-$ $\mathrm{dppm})(\mathrm{CO})_{7} \quad(100 \mathrm{mg}, \quad 0.12 \mathrm{mmol}), \quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(7 \mathrm{mg}$, 0.006 mmol) and $\mathrm{CuI}(2 \mathrm{mg}, 0.012 \mathrm{mmol})$ in thf $(7 \mathrm{ml})$ was stirred at r.t. for 1 h . After removal of solvent, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by preparative t.l.c. (acetone-hexane 3/7). The major brown-green band $\left(R_{\mathrm{f}} 0.69\right)$ contained $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CPh}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(3)$ $(93.2 \mathrm{mg}, 91 \%)$ as dark green crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Anal. Calc. for $\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \cdot 0 . \quad 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(\mathrm{MW}=$ 870): C, 54.57 ; H, 3.28. Found: C, $54.73 ; \mathrm{H}, 2.75 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2116 \mathrm{vw} ; v(\mathrm{CO}) 2058 \mathrm{~s}, 2009 \mathrm{vs}$, 1989 (sh), 1969 (sh), 1948 (sh). ${ }^{1} \mathrm{H}$ NMR: δ 3.44, 4.49 $(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 5.30\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 7.14-7.59(\mathrm{~m}$, $25 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR: $\delta 34.2$ [s (br), dppm]. ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): $893,[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}, m / z): 869,[\mathrm{M}-\mathrm{H}]^{+}$.

Method B: When $\operatorname{Ag}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)$ was used under the same conditions, 3 was obtained in 55% yield.
4.6.1.3. $R=$ SiMe $_{3}$ (4). Method A: $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}$, $0.005 \mathrm{mmol})$ and $\mathrm{CuI}(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ were added to a solution of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(84.9 \mathrm{mg}$, $0.1 \mathrm{mmol})$ and $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PPh}_{3}\right)(55.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ in thf $(5 \mathrm{ml})$ and the mixture was stirred at r.t. for 2 h . After removal of solvent under reduced pressure, the residue was dissolved in acetone-hexane (3/7) and run through a silica gel column using the same solvent mixture as eluent. A major brown-green fraction was collected and after evaporation gave $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad$ (4) ($75 \mathrm{mg}, 86 \%$) as dark green crystals (hexane). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Si}(\mathrm{MW}=866)$: $\mathrm{C}, 52.68 ; \mathrm{H}, 3.61$. Found: C, 52.64; H, 3.62. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C})$ 2138vw; v(CO) 2065s, 2048s, 2010vs, 1990 (sh). ${ }^{1}$ H NMR: $\delta 0.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 3.49,4.54\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.13-7.58 (m, 20H, Ph). ${ }^{13} \mathrm{C}$ NMR: $\delta 0.10\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right)$, 39.52 [t, J(CP) 25.4 Hz, dppm], 116.70, $126.19(2 \times \mathrm{s}$, carbon chain), 128.22-137.28 (m, Ph), 202.13, 210.08, 225.14 [s (br), CO]. ${ }^{31} \mathrm{P}$ NMR: $\delta 33.3$ [s (br), dppm]. ESMS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, \quad m / z$): 889, $[\mathrm{M}+\mathrm{Na}]^{+} ;($negative ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$), 865, $[\mathrm{M}-\mathrm{H}]^{-}$.

Method B: A solution of $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ ($200 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(48 \mathrm{mg}, 0.5 \mathrm{mmol})$ in thf (10 ml) was treated with CuI $(2 \mathrm{mg}, 0.012 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(14 \mathrm{mg}, 0.012 \mathrm{mmol})$, followed by addition of dbu (several drops). After stirring at r.t. for 2 h , workup as above gave $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mu$-dppm $)(\mathrm{CO})_{7}(\mathbf{4})$ ($157 \mathrm{mg}, 75 \%$). A minor product formed on some occasions was identified as $\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{6}\right)$ [10a].
4.6.1.4. $R=F c(5) . \quad T h f(10 \mathrm{ml})$ was added to a solid mixture of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CFc})\left(\mathrm{PPh}_{3}\right) \quad(100 \mathrm{mg}, \quad 0.15 \mathrm{mmol})$, $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(127 \mathrm{mg}, \quad 0.15 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(17 \mathrm{mg}, \quad 0.015 \mathrm{mmol})$ and $\mathrm{CuI} \quad(3 \mathrm{mg}$, 0.015 mmol) and the reaction was stirred at r.t. for 1 h. , after which spot t.l.c. showed the absence of starting materials. After evaporation of thf, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by preparative t.l.c. (acetone-hexane 1/4). One brown band developed (R_{f} 0.43) and contained $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CFc}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(5)$ ($134 \mathrm{mg}, 91 \%$) as very dark red crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. X-ray quality crystals were obtained as the mono- CHCl_{3} solvate from $\mathrm{CHCl}_{3} /$ hexane. Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{Co}_{3}{ }^{-}$ $\mathrm{FeO}_{7} \mathrm{P}_{2} \quad(\mathrm{MW}=978): \mathrm{C}, 55.22 ; \mathrm{H}, 3.17$. Found: C, $55.19 ; \mathrm{H}, 3.20 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2123 \mathrm{vw}$; v (CO) 2057s, 2007vs, 1988 (sh), 1965 (sh), 1948 (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.40,4.41(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 4.20(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{Cp}), 4.33,4.48\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.12-7.59(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta 40.49$ [t, J(CP) $\left.21.4 \mathrm{~Hz}, \mathrm{dppm}\right]$, $69.84(\mathrm{~s}, \mathrm{Cp}), 69.14,70.45\left(2 \times \mathrm{s}, \mathrm{C}_{\mathrm{a}}, \mathrm{C}_{\mathrm{b}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 67.99$ $\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 107.95,111.77(2 \times \mathrm{s}$, chain carbons), 128.24-145.06 (m, Ph), 202.44, 212.58, 226.21 [s (br), CO]. ${ }^{31} \mathrm{P}$ NMR: $\delta 33.7$ (s, dppm). ES-MS (positive ion mode, $\mathrm{MeOH}, m / z$): 978, $\mathrm{M}^{+} ; 950$, $[\mathrm{M}-\mathrm{CO}]^{+}$; (negative ion, $\mathrm{MeOH}, m / z$): 977, $[\mathrm{M}-\mathrm{H}]^{-}$.
4.6.1.5. $R=A u\left(P P h_{3}\right)$ (6). A solution containing 4 $(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(57 \mathrm{mg}, 0.12 \mathrm{mmol})$ in thf $/ \mathrm{MeOH}(4 / 1,5 \mathrm{ml})$ was treated with NaOMe [from $\mathrm{Na}(6 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{ml})]$ and the mixture was stirred at r.t. for 3 h . After removal of solvent under vacuum, the brown residue was transferred to a sintered filter, washed with MeOH and hexane and dried. Crystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ gave $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})$ $(\mathrm{CO})_{7}(6)(130 \mathrm{mg}, 90 \%)$ as dark red crystals. Anal. Calc. for $\mathrm{C}_{53} \mathrm{H}_{37} \mathrm{AuCo}_{3} \mathrm{O}_{7} \mathrm{P}_{3}(\mathrm{MW}=1252)$: $\mathrm{C}, 50.80 ; \mathrm{H}, 2.95$. Found: C, $50.65 ; \mathrm{H}, 3.02 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C})$ 2137 vw ; v (CO) 2053s, 2005vs, 1983 (sh), 1961 (sh); (cyclohexane): $v(\mathrm{CO}) 2061 \mathrm{~s}, 2015 \mathrm{vs}, 2011 \mathrm{vs}, 1997 \mathrm{~m}, ~ 1984 \mathrm{w}$, $1976 \mathrm{~m}, 1960 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: $\delta 3.24,5.04(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}$, dppm), $7.15-7.59(\mathrm{~m}, 35 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR: $\delta 32.5$ [s (br), dppm], 43.5 [s (br), PPh_{3}]. ES-MS (positive ion, MeOH , $m / z): 1253,[\mathrm{M}+\mathrm{H}]^{+} ;(\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 1275$, $[\mathrm{M}+\mathrm{Na}]^{-}$.
4.6.1.6. $R=C_{6} H_{4} I(7)$. A solution containing $\mathrm{Co}_{3}\left\{\mu_{3^{-}}\right.$ $\left.\mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(50 \mathrm{mg}, \quad 0.04 \mathrm{mmol})$, $1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad(6.4 \mathrm{mg}, \quad 0.02 \mathrm{mmol}), \quad \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(5 \mathrm{mg}$, $0.004 \mathrm{mmol})$ and $\mathrm{CuI}(1 \mathrm{mg}, 0.006 \mathrm{mmol})$ in thf (3 ml) was stirred at r.t. for 6 h . After removal of solvent, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by preparative t.l.c. (acetone-hexane 3/7) into two fractions. Band $1\left(R_{\mathrm{f}} 0.50\right.$, green) contained $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{I}-\right.$ $4)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(7)(12.2 \mathrm{mg}, 61 \%)$, obtained as very dark green crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Anal. Calc. for $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{Co}_{3} \mathrm{IO}_{7} \mathrm{P}_{2}$ (MW =996): C, 49.40; H, 2.61. Found: $\mathrm{C}, 49.65 ; \mathrm{H}, 2.31 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2117 \mathrm{vw}$; v (CO) 2060s, 2010vs, 1980 (sh), 1967 (sh), 1949 (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.40,4.37(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 7.05-7.69(\mathrm{~m}$, $\left.24 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{31} \mathrm{P}$ NMR: $\delta 34.3$ [s (br), dppm]. ESMS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, \quad m / z$): 1019 , $[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}, \mathrm{m} / \mathrm{z}$): 995, $[\mathrm{M}-\mathrm{H}]^{-}$; 967, $[\mathrm{M}-\mathrm{H}-\mathrm{CO}]^{-}$. The second orange-brown band (R_{f} 0.45 contained $1,4-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2}$ $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{8})(3.6 \mathrm{mg}, 11 \%)$, identified by comparison with a sample prepared as described below.
4.6.1.7. $R=C_{6} H_{4} C \equiv C P h(9)$. A mixture of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{C}$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}-4\right)\left(\mathrm{PPh}_{3}\right)(90 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)-$ $(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(116 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.2 \mathrm{mg}$, $0.006 \mathrm{mmol})$ and $\mathrm{CuI}(1.3 \mathrm{mg}, 0.006 \mathrm{mmol})$ in thf $(10 \mathrm{ml})$ was stirred at r.t. for 2.5 h . After removal of solvent, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by preparative t.l.c. (hexane-acetone $10 / 1$). The major brown band (R_{f} 0.56) contained $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)(\mu$-dppm $)-$ $(\mathrm{CO})_{7}(9)(51 \mathrm{mg}, 39 \%)$ which was isolated as dark brown crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$ (MW =970): C, $60.62 ; \mathrm{H}, 3.19$. Found: C, $60.61 ; \mathrm{H}$, 3.17%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2115 \mathrm{vw}, 2100 \mathrm{vw}$; $v(\mathrm{CO}) 2059 \mathrm{~s}$, 2011vs, 1993 (sh), 1967 (sh). ${ }^{1} \mathrm{H}$ NMR: δ $3.40,4.43(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 7.18-7.52(\mathrm{~m}, 29 \mathrm{H}$, $\left.\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 41.27\left[\mathrm{t}, J(\mathrm{CP}) 22.5 \mathrm{~Hz}, \mathrm{PCH}_{2}\right]$, 89.70, $91.10\left(2 \times \mathrm{s}, \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right), 110.37\left(\mathrm{~s}, \mathrm{C}^{3}\right), 114.19$
$\left(\mathrm{s}, \mathrm{C}^{2}\right), 121.80-135.96(\mathrm{~m}, \mathrm{Ph}), 202.15,210.05,221.73(3 \times \mathrm{s}$, br, CO). ${ }^{31} \mathrm{P}$ NMR: $\delta 34.3$ (s, dppm). ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 993, $[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 969,[\mathrm{M}-\mathrm{H}]^{-}$.

4.7. Preparation of $1,4-\left\{(O C)_{7}(\mu-d p p m) \operatorname{Co}_{3}\right\}_{2}\left\{\left(\mu_{3^{-}}\right.\right.$ $C C \equiv C)\}_{2} C_{6} H_{4}$ (8)

A mixture of $1,4-\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathrm{C})\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad(30 \mathrm{mg}$, $0.03 \mathrm{mmol}), \quad \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(98 \mathrm{mg}$, $0.06 \mathrm{mmol}), \quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, \quad 0.013 \mathrm{mmol})$ and CuI $(5 \mathrm{mg}, 0.026 \mathrm{mmol})$ was stirred in thf $(20 \mathrm{ml})$ at r.t. for 1 h . The solvent was then removed and the resulting dark purple residue purified by preparative t.l.c. eluting with acetone/hexane (2:3) to obtain $1,4-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\right\}_{2^{-}}$ $\left\{\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{8})$ as an orange band $\left(R_{\mathrm{f}} 0.68\right)$ (20.3 mg, 41\%). Anal. Calc. for $\mathrm{C}_{76} \mathrm{H}_{48} \mathrm{P}_{4} \mathrm{Co}_{6} \mathrm{O}_{14}(\mathrm{MW}=$ 1662): C, 54.87 ; H, 2.89. Found: C, 54.92 ; H, 2.75\%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2114 \mathrm{w}, v(\mathrm{CO}) 2059 \mathrm{~s}, 2010 \mathrm{vs}$ 1993sh(m), 1969sh(w). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.42,4.44(2 \times \mathrm{m}$, $\left.2 \times 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.18-7.50\left(\mathrm{~m}, 44 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 37.0$ (s, br, 4P, dppm). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): $1685[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}, m / z): 1661,[\mathrm{M}-\mathrm{H}]^{-}$.
4.8. Reaction of $1,3,5-\left\{\left(\mathrm{Ph}_{3} P\right) A u C \equiv C\right\}_{3} C_{6} H_{3}$ with $\mathrm{Co}_{3}\left(\mu_{3^{-}}\right.$ $\mathrm{CBr})(\mu-d p p m)(\mathrm{CO})_{7}$
(a) A solution of $1,3,5-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuC} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(59.7 \mathrm{mg}\right.$, $0.039 \mathrm{mmol})$ and $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(100$ $\mathrm{mg}, 0.118 \mathrm{mmol})$ in thf $(10 \mathrm{ml})$ was treated with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.5 \mathrm{mg}, 0.0035 \mathrm{mmol})$ and $\mathrm{CuI}(1 \mathrm{mg}$, 0.005 mmol) and the mixture was stirred at r.t. for 4 h . After removal of solvent under vacuum, a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the residue was purified by preparative t.l.c. (acetone-hexane, 3/7). The major brown band $\left(R_{\mathrm{f}} 0.40\right)$ contained $1,3,5-\left\{(\mathrm{OC})_{7}(\mu-\right.$ dppm $\left.) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \quad(10) \quad(48.8 \mathrm{mg}, \quad 50 \%)$, obtained as dark red crystals $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. CHCl_{3}-solvated crystals were obtained for the X ray study. Anal. Calc. for $\mathrm{C}_{111} \mathrm{H}_{69} \mathrm{Co}_{9} \mathrm{O}_{21} \mathrm{P}_{6}$ $(\mathrm{MW}=2454): \mathrm{C}, 54.28 ; \mathrm{H}, 2.83$. Found: C, 54.80; $\mathrm{H}, 2.83 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2115 \mathrm{w}$; $v(\mathrm{CO}) 2059 \mathrm{~s}, 2010 \mathrm{vs}, 1990$ (sh), 1969 (sh), 1953 (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.46,4.43\left(2 \times \mathrm{m}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17-$ $7.58\left(\mathrm{~m}, 63 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 40.81$ [s (br), CH_{2}], 108.92, $112.76\left(2 \times \mathrm{s}, 2 \times \mathrm{C}\right.$ of C_{3} chain), 126.54-132.17 (m, Ph $+\mathrm{C}_{6} \mathrm{H}_{3}$), 202.24 [s (br), CO]. ${ }^{31} \mathrm{P}$ NMR: $\delta 35.0$ [s (br), dppm]. ES MS (positive ion, $\mathrm{MeOH}, m / z): 2454, \mathrm{M}^{+} ;(\mathrm{MeOH}+\mathrm{NaOMe}$, m / z): 2477, $[\mathrm{M}+\mathrm{Na}]^{+}$.
(b) From a sample of $1,3,5-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuC} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ containing a significant amount of $1,3-\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuC}\right.$ $\equiv \mathrm{C}\}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}-5$, a similar reaction with $\mathrm{Co}_{3}\left(\mu_{3}-\right.$ $\mathrm{CBr})(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(33 \mathrm{mg}, 0.039 \mathrm{mmol})$ was carried out with the addition of a few drops of dbu. After 2 h
at r.t., work-up as above afforded a green-brown band $\left(R_{\mathrm{f}} \quad 0.47\right)$ which contained $1,3-\left\{(\mathrm{OC})_{7}(\mu-\right.$ dppm $\left.) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}-5 \quad$ (11) $\quad(10.8 \mathrm{mg})$, obtained as brown-red crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Crystals of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-solvate for the X-ray study were obtained by recrystallisation from the same solvent mixture. Anal. Calc. for $\mathrm{C}_{76} \mathrm{H}_{47} \mathrm{BrCo}_{6} \mathrm{O}_{14} \mathrm{P}_{4}(\mathrm{MW}=$ 1742): C, 52.38; H, 2.69. Found: C, 52.34; H, 2.61%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2114 \mathrm{w} ; v(\mathrm{CO})$ 2057s, 2009vs, 1988 (sh), 1970 (sh), 1951 (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.40,4.41\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.95-7.51$ $\left(\mathrm{m}, 43 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{3}\right) .{ }^{31} \mathrm{P}$ NMR: $\delta 35.2$ [s (br), dppm]. ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}$, m / z): 1765, $[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}+$ NaOMe, m / z): 1741, $[\mathrm{M}-\mathrm{H}]^{-}$.

4.9. $1,1^{\prime}-\left\{(O C)_{7}(\mu-d p p m) \operatorname{Co}_{3}\left(\mu_{3}-C C \equiv C\right)\right\}_{2} F c^{\prime}$ (12)

A solution containing $1,1^{\prime}-\mathrm{Fc}^{\prime}\left\{\mathrm{C} \equiv \mathrm{CAu}\left[\mathrm{P}(\text { tol })_{3}\right]\right\}_{2}$ $(26 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(36 \mathrm{mg}$, $0.04 \mathrm{mmol}), \quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{mg}, \quad 0.001 \mathrm{mmol})$ and CuI $(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ in thf $(5 \mathrm{ml})$ was stirred at r.t. for 2 h . After removal of solvent, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by preparative t.1.c. (acetonehexane $3 / 7$) to give one major band ($R_{\mathrm{f}} 0.34$), from which $1,1^{\prime}-\left\{(\mathrm{OC})_{7}(\mu-\mathrm{dppm}) \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)\right\}_{2} \mathrm{Fc}^{\prime} \quad$ (12) \quad (35.7 mg , $96 \%)$ was isolated as very dark red crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ MeOH). Anal. Calc. for $\mathrm{C}_{80} \mathrm{H}_{52} \mathrm{Co}_{6} \mathrm{FeO}_{14} \mathrm{P}_{4} \quad(\mathrm{MW}=$ 1770): C, 54.23; H, 2.94. Found: C, $54.26 ;$ H, 2.96%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2122 \mathrm{vw} ; v(\mathrm{CO}) 2057 \mathrm{~s}, 2008 \mathrm{vs}$, 1989 (sh), 1977 (sh), 1964 (sh). ${ }^{1} \mathrm{H}$ NMR: δ 3.43, 4.44 $(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 4.40,4.53\left(2 \times \mathrm{m}, 2 \times 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, 7.11-7.52 (m, 40H, Ph). ${ }^{31} \mathrm{P}$ NMR: $\delta 33.7$ [s (br), dppm]. ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, \quad m / z$): 1793, $[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}, m / z$): 1769, $[\mathrm{M}-\mathrm{H}]^{-}$.

4.10. $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} R\right\}(\mu-d p p m)(\mathrm{CO})_{7}$

4.10.1. $R=\mathrm{SiMe}_{3}$ (13)

A mixture of $\mathrm{Co}_{3}\left\{\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv\right) \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})$ $(\mathrm{CO})_{7}(280 \mathrm{mg}, 0.219 \mathrm{mmol}), \mathrm{IC} \equiv \mathrm{CSiMe}_{3}(85 \mathrm{mg}, 0.379$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{CuI}(2 \mathrm{mg}$, $0.01 \mathrm{mmol})$ in thf (10 ml) was stirred at r.t. for 2 h . After removal of solvent, preparative t.l.c. (acetone-hexane 1/2) of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the residue developed two bands. Band 1 ($R_{\mathrm{f}} 0.55$, brown) contained $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3}\right.$ -$\left.\mathrm{SiMe}_{3}\right\}(\mu$-dppm $)(\mathrm{CO})_{7}(13)(108 \mathrm{mg}, 54 \%)$, obtained a brown-black crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Si}(\mathrm{MW}=914)$: $\mathrm{C}, 55.16 ; \mathrm{H}, 3.42$. Found: C, $55.20 ; \mathrm{H}, 3.48 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C})$ 2134 vw ; v(CO) 2062s, $2018 \mathrm{vs}, 1974$ (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.26$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}$), $3.41,4.24(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 7.20-7.41$ (m, 20H, Ph). ${ }^{31}$ P NMR: $\delta 34.6$ (s, dppm). ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, \quad m / z$): 937, $\quad[\mathrm{M}+\mathrm{Na}]^{+} ; ~ 915$, $[\mathrm{M}+\mathrm{H}]^{+} ; \quad 865, \quad\left[\mathrm{M}+\mathrm{H}+\mathrm{Na}-\mathrm{SiMe}_{3}\right]^{+} ; \quad$ (negative ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 913,[\mathrm{M}-\mathrm{H}]^{-} ; 841,\left[\mathrm{M}-\mathrm{SiMe}_{3}\right]^{-}$;

Table 2
Crystal data and refinement details

Complex	2	3- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	5. CHCl_{3}
Formula	$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$	$\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Si}$	$\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{FeO}_{7} \mathrm{P}_{2} \cdot \mathrm{CHCl}_{3}$
Molecular weight	850.42	955.34	866.49	1097.71
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	$P \overline{1}$	$P 2_{1} / n$	$P \overline{1}$	$P \overline{1}$
$a($ A)	11.551(2)	15.819(1)	11.497(2)	13.388(2)
$b(\AA)$	11.951(2)	11.869(1)	11.847(2)	15.437(2)
$c(\mathrm{~A})$	14.206(3)	22.280(2)	14.230(3)	23.798(4)
$\alpha\left({ }^{\circ}\right)$	86.870(5)		86.192(4)	103.256(3)
$\beta\left({ }^{\circ}\right)$	77.758(5)	103.505(2)	77.441(4)	91.655(3)
$\gamma\left({ }^{\circ}\right)$	87.216(5)		86.772(4)	111.921(3)
$V\left(\AA^{3}\right)$	1912	4067	1886	4405
$\rho_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$1.47{ }_{7}$	1.560	$1.52{ }_{6}$	1.655
Z	2	4	2	4
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	75	70	65	50
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	1.42	1.47	1.47	1.74
$T_{\min / \max }$	0.87	0.88	0.85	0.69
Crystal dimensions (mm)	$0.46 \times 0.25 \times 0.20$	$0.38 \times 0.32 \times 0.25$	$0.43 \times 0.35 \times 0.28$	$0.25 \times 0.20 \times 0.10$
$N_{\text {tot }}$	36883	72089	38998	60143
$N\left(R_{\text {int }}\right)$	18952 (0.028)	17984 (0.053)	13305 (0.034)	14912 (0.085)
N_{0}	14566	11543	10511	11005
R	0.037	0.044	0.038	0.065
$R_{\text {w }}\left(n_{\mathrm{w}}\right)$	0.048 (8)	0.049 (6)	0.045 (5)	0.132 (40)
	6	7	9	$\mathbf{1 0} \cdot 2 \mathrm{CHCl}_{3}$
Formula	$\mathrm{C}_{53} \mathrm{H}_{37} \mathrm{AuCo}_{3} \mathrm{O}_{7} \mathrm{P}_{3}$	$\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{Co}_{3} \mathrm{IO}_{7} \mathrm{P}_{2}$	$\mathrm{C}_{49} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$	$\mathrm{C}_{111} \mathrm{H}_{69} \mathrm{Co}_{9} \mathrm{O}_{21} \mathrm{P}_{6} \cdot 2 \mathrm{CHCl}_{3}$
Molecular weight	1252.56	996.30	970.53	2693.75
Crystal system	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$	Pbca	$P \overline{1}$
$a(\mathrm{~A})$	13.687(2)	10.550(1)	12.214(2)	17.615(5)
$b(\mathrm{~A})$	13.764(2)	11.467(1)	22.689(3)	18.507(5)
$c(\mathrm{~A})$	14.039(2)	18.061(2)	30.421(4)	19.930(6)
$\alpha\left({ }^{\circ}\right)$	89.615(4)	73.721(2)		68.971(5)
$\beta\left({ }^{\circ}\right)$	78.234(4)	81.711(2)		74.113(5)
$\gamma\left({ }^{\circ}\right.$)	69.498(4)	66.440(2)		71.475 (5)
$V\left(\AA^{3}\right)$	2419	1921	8431	5656
$\rho_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.719	$1.72{ }_{2}$	1.529	1.582
Z	2	2	8	2
$2 \theta_{\max }\left({ }^{\circ}\right.$)	66.5	65	52	45
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	4.2	2.22	1.30	1.58
$T_{\text {min } / \text { max }}$	0.68	0.61	0.84	0.79
Crystal dimensions (mm)	$0.28 \times 0.23 \times 0.16$	$0.52 \times 0.20 \times 0.15$	$0.85 \times 0.05 \times 0.04$	$0.33 \times 0.28 \times 0.05$
$N_{\text {tot }}$	39993	30132	69472	41488
$N\left(R_{\text {int }}\right)$	18377 (0.053)	13651 (0.043)	8090 (0.074)	14868 (0.12)
N_{0}	13474	9372	6420	8601
R	0.041	0.046	0.047	0.16
$R_{\text {w }}\left(n_{\mathrm{w}}\right)$	0.044 (4)	0.051 (6)	0.059 (15)	0.26 (328)
	$11 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	13	16
Formula	$\mathrm{C}_{76} \mathrm{H}_{47} \mathrm{Co}_{6} \mathrm{O}_{14} \mathrm{P}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{80} \mathrm{H}_{52} \mathrm{Co}_{6} \mathrm{FeO}_{14} \mathrm{P}_{4}$	$\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Si}$	$\mathrm{C}_{45} \mathrm{H}_{27} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$
Molecular weight	1826.53	1770.62	914.54	918.45
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / c$	$P 2{ }_{1} / c$	$P 2_{1} / n$	$P 2{ }_{1} / c$
$a(\mathrm{~A})$	17.054(3)	11.294(1)	18.271(2)	10.044(1)
$b\left(\right.$ (${ }_{\text {® }}$)	20.202(3)	19.911(2)	12.644(1)	25.238(2)
$c(\AA)$	21.897(3)	17.047(2)	19.171(2)	16.303(2)
$\alpha\left(^{\circ}\right) \quad\left({ }^{\circ}\right.$				
$\beta\left({ }^{\circ}\right)$	100.459(2)	102.174(2)	114.498(2)	94.785(2)
$\gamma\left({ }^{\circ}\right)$				
$V\left(\AA^{3}\right)$	7419	3747	4030	4118
$\rho_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.635	$1.58{ }_{1}$	$1.50{ }_{7}$	$1.48{ }_{1}$
Z	4	2	4	4
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	58	58	58	65
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	2.07	1.63	1.38	1.32

Table 2 (continued)

	$\mathbf{1 1} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 6}$
$T_{\text {min } / \text { max }}$	0.79	0.88	0.77	0.86
Crystal dimensions (mm)	$0.28 \times 0.15 \times 0.08$	$0.32 \times 0.15 \times 0.13$	$0.56 \times 0.41 \times 0.12$	$0.20 \times 0.12 \times 0.10$
$N_{\text {tot }}$	71451	21820	57543	72405
$N\left(R_{\text {int }}\right)$	$18439(0.045)$	$9750(0.031)$	$10606(0.075)$	$17960(0.060)$
N_{0}	13097	7363	7553	10430
R	0.045	0.044	0.048	0.046
$R_{\mathrm{w}}\left(n_{\mathrm{w}}\right)$	$0.053(1.5)$	$0.054(10)$	$0.098(3000)$	$0.062(20)$

814, $\left[\mathrm{M}+\mathrm{H}-\mathrm{CO}-\mathrm{SiMe}_{3}\right]^{-}$. Band $2\left(R_{\mathrm{f}} 0.38\right.$, red-brown $)$ contained $\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{10}\right)$, identified by comparison with an authentic sample [10a].

4.10.2. $R=F c(14)$

A mixture of $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})-$ $\left.(\mathrm{CO})_{7}\right\} \quad(60 \mathrm{mg}, \quad 0.05 \mathrm{mmol}), \quad \mathrm{FcC} \equiv \mathrm{CI}(15.3 \mathrm{mg}, \quad 0.05$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{mg}, 0.0025 \mathrm{mmol})$ and $\mathrm{CuI}(1 \mathrm{mg}$, $0.005 \mathrm{mmol})$ in thf $(7 \mathrm{ml})$ was stirred at r.t. for 30 min . Evaporation and purification of the residue by preparative t.l.c. (acetone/hexane $1 / 4$) gave three bands. The fastest moving ($R_{\mathrm{f}} 0.93$) contained $\mathrm{FcC} \equiv \mathrm{CC} \equiv \mathrm{CFc}(2 \mathrm{mg}, 5 \%$), identified by comparison with an authentic sample [26]. The major product was contained in the second brownorange band ($R_{\mathrm{f}} 0.26$), which gave $\mathrm{Co}_{3}\left\{\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)_{3}{ }^{-}\right.$ $\mathrm{Fc}\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{1 4})(40.8 \mathrm{mg}, 87.4 \%)$ as very thin red plates $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$. Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{31} \mathrm{Co}_{3} \mathrm{FeO}_{7} \mathrm{P}_{2}$ $(\mathrm{MW}=1026): \mathrm{C}, 57.31 ; \mathrm{H}, 3.02$. Found: $\mathrm{C}, 56.74 ; \mathrm{H}$, 2.57%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2168 \mathrm{w}, 2100 \mathrm{vw}$; $v(\mathrm{CO}) 2063 \mathrm{~s}, 2013 \mathrm{vs}, 1973$ (sh), 1958 (sh) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 3.40,4.25\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{Cp}), 4.30,4.56\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.15-7.69(\mathrm{~m}, 20 \mathrm{H}$, $\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta 42.75\left[\mathrm{t}, J(\mathrm{CP}) 18.3, \mathrm{CH}_{2} \mathrm{P}\right], 70.35(\mathrm{~s}$, $\mathrm{Cp}), 69.76,72.35\left(2 \times \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 63.38,65.66,72.73$, 80.95, 85.99, 97.13, $99.03\left(\mathrm{C}_{\text {ipso }}\right.$ of $\mathrm{C}_{5} \mathrm{H}_{4}+\operatorname{six} \mathrm{C}$ of C_{7} chain), 201.43, 209.79, $212.4(3 \times \mathrm{s}, \mathrm{CO}) .{ }^{31} \mathrm{P}$ NMR: δ 33.8 (s, dppm). ES-MS (positive ion, $\mathrm{MeOH}, m / z$): 1027, $[\mathrm{M}+\mathrm{H}]^{+} ; ~ 1026, \quad[\mathrm{M}]^{+} ; ~ 998, \quad[\mathrm{M}-\mathrm{CO}]^{+} ;$(positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 1049, $[\mathrm{M}+\mathrm{Na}]^{+} ;$(negative ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 1025,[\mathrm{M}-\mathrm{H}]^{-}$. The third band $\left(R_{\mathrm{f}} 0.15\right.$, brown-orange) contained $\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\}_{2^{-}}$ $\left(\mu_{3}: \mu_{3}-\mathrm{C}_{10}\right)(0.6 \mathrm{mg}, 1 \%)$, identified by comparison with an authentic sample [10a].

4.10.3. $R=A u\left(P P h_{3}\right)$ (15)

NaOMe [from 10 mg Na in $\mathrm{MeOH}(10 \mathrm{ml})$] was added to a solution of $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{SiMe}_{3}\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ ($84 \mathrm{mg}, 0.092 \mathrm{mmol}$) in thf $/ \mathrm{MeOH}(1 / 1,10 \mathrm{ml}$), and after stirring for 10 min at r.t., $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(46 \mathrm{mg}, 0.093 \mathrm{mmol})$ was added. A brown precipitate separated and after stirring at r.t. for 1 h , the precipitate was collected and washed with $\mathrm{MeOH}(2 \times 2 \mathrm{ml})$ affording $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-$ $\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{1 5})(90 \mathrm{mg}, 75 \%)$ as a brown powder. Anal. Calc. for $\mathrm{C}_{57} \mathrm{H}_{37} \mathrm{AuCo}_{3} \mathrm{O}_{7} \mathrm{P}_{3}(\mathrm{MW}=1300)$: $\mathrm{C}, 52.64 ; \mathrm{H}$, 2.87. Found: $\mathrm{C}, 52.59 ; \mathrm{H}, 2.83 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $v(\mathrm{C} \equiv \mathrm{C}) 2117 \mathrm{vw} ; \quad v(\mathrm{CO}) 2060 \mathrm{~s}, 2012 \mathrm{vs}, 1974$ (sh). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.40,4.34(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, \mathrm{dppm}), 7.18-7.56(\mathrm{~m}$,
$35 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta 42.63\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 57.49,82.83$, 88.79, $95.20,98.81(5 \times \mathrm{s}$, carbon chain), 128.38-131.86 (m, Ph), 134.20-134.52 (m, Ph), 201.52 (br, CO). ${ }^{31} \mathrm{P}$ NMR: $\delta 34.7$ [s (br), dppm]. ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 1323,[\mathrm{M}+\mathrm{Na}]^{+}$.

4.10.4. $R=P h(16)$

A solution containing $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}$ -$\left.(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\} \quad(50 \mathrm{mg}, \quad 0.04 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{mg}, 0.0025 \mathrm{mmol}$) in thf $(5 \mathrm{ml})$ was added to a mixture of iodine $(10 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{CuI}(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ in thf $(5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . After this time, a solution of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)$ $(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in thf (5 ml) was added dropwise and the mixture was stirred for a further 1 h at $-78^{\circ} \mathrm{C}$. After allowing to warm to r.t., the filtered soluton was evaporated and the residue was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by preparative t.l.c. (acetone-hexane 3/7). The brown band ($R_{\mathrm{f}} 0.76$) contained $\mathrm{Co}_{3}\left\{\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{C}\right)_{3} \mathrm{Ph}\right\}(\mu-\mathrm{dppm})$ $(\mathrm{CO})_{7}(\mathbf{1 6})(21 \mathrm{mg}, 60 \%)$, obtained as black needles $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$. Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{27} \mathrm{Co}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$ $(\mathrm{MW}=918): \mathrm{C}, 58.82 ; \mathrm{H}, 2.94$. Found: C, $58.98 ; \mathrm{H}$, 2.87%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2190 \mathrm{w}, 2171 \mathrm{vw}$; $v(\mathrm{CO}) 2065 \mathrm{~s}, 2040 \mathrm{~m}, 2014 \mathrm{~m}, 1973$ (sh), 1955 (sh) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR: $\delta 3.30,4.15(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}$, dppm $)$, 7.09-7.47 (m, 25H, Ph). ${ }^{31} \mathrm{P}$ NMR: $\delta 34.6$ (s, dppm). ES-MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 941, $[\mathrm{M}+\mathrm{Na}]^{+}$; (negative ion, $\mathrm{MeOH}, \mathrm{m} / z): 917,[\mathrm{M}-\mathrm{H}]^{-} ; 889,[\mathrm{M}-\mathrm{H}-\mathrm{CO}]^{-}$.

4.11. Structure determinations

Full spheres of diffraction data were measured at ca. 153 K using a Bruker AXS CCD area-detector instrument. $N_{\text {tot }}$ reflections were merged to N unique ($R_{\text {int }}$ cited) after "empirical"/multiscan absorption correction (proprietary software), N_{0} with $F>4 \sigma(F)$ being used in the full matrix least squares refinements. All data were measured using monochromatic Mo K α radiation, $\lambda=0.71073 \AA$. Anisotropic displacement parameter forms were refined for the non-hydrogen atoms, $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ being included, constrained at estimates. Conventional residuals R, R_{w} on $|F|$ are quoted [weights: $\left(\sigma^{2}(F)+0.000 n_{\mathrm{w}} F^{2}\right)^{-1}$]. Neutral atom complex scattering factors were used; computation used the xtal 3.7 program system [39]. Pertinent results are given in the figures (which show non-hydrogen atoms with 50% probability amplitude displacement ellipsoids and hydrogen atoms with arbitrary radii of $0.1 \AA$) and in Tables 1 and 2.

Variata. 4. $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ were refined throughout; it is isomorphous with 2 and was refined in the same cell and coordinate setting.
5. The iron atoms of both molecules were modelled as disordered over pairs of sites, occupancies refining in concert to 0.888 (3) and complement. Fe...Fe are $0.88(1)$ and $0.86(1) \AA$; minor components of the associated Cp ligands were not located.
10. Weak and limited data resulted in a determination of inferior precision. Refinement on F^{2}.
11. The dichloromethane of solvation was modelled as disordered over two sets of sites, occupancies $0.694(5)$ and complement.
13. Refinement on F^{2}.

5. Supplementary material

Full details of the structure determinations (except structure factors) have been deposited with the Cambridge Crystallographic Data Centre as CCDC 284347-284358. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: + 441223336 033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgement

We thank the ARC for support of this work.

References

[1] J.L. Bredas, R.R. Chance (Eds.), Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, Kluwer, Dordrecht, 1990.
[2] F. Paul, C. Lapinte, in: M. Gielen, R. Willem, B. Wrackmeyer (Eds.), Unusual Structures and Physical Properties in Organometallic Chemistry, Wiley, New York, 2002, p. 220.
[3] F. Paul, C. Lapinte, Coord. Chem. Rev. 178-180 (1978) 431.
[4] M.I. Bruce, P.J. Low, Adv. Organomet. Chem. 50 (2004) 179.
[5] B.E. Woodworth, J.L. Templeton, J. Am. Chem. Soc. 118 (1996) 7418.
[6] (a) W. Weng, J.A. Ramsden, A.M. Arif, J.A. Gladysz, J. Am. Chem. Soc. 115 (1993) 3824;
(b) T. Bartik, W. Weng, J.A. Ramsden, S. Szafert, S.B. Falloon, A.M. Arif, J.A. Gladysz, J. Am. Chem. Soc. 120 (1998) 11071;
(c) W. Weng, T. Bartik, J.A. Gladysz, Angew. Chem. 106 (1994) 2272; Angew. Chem., Int. Ed. Engl. 33 (1994) 2199.
[7] R. Dembinski, S. Szafert, P. Haquette, T. Lis, J.A. Gladysz, Organometallics 18 (1999) 5438.
[8] (a) R.D. Dewhurst, A.F. Hill, M.K. Smith, Angew. Chem. Int. Ed. 43 (2004) 476;
(b) R.D. Dewhurst, A.F. Hill, A.C. Willis, Organometallics 23 (2004) 1646;
(c) R.D. Dewhurst, A.F. Hill, A.C. Willis, Organometallics 23 (2004) 5903;
(d) R.D. Dewhurst, A.F. Hill, A.C. Willis, Chem. Commun. (2004) 2826.
[9] M.I. Bruce, P.A. Humphrey, G. Melino, B.W. Skelton, A.H. White, N.N. Zaitseva, Inorg. Chim. Acta 358 (2005) 1453.
[10] (a) M.I. Bruce, M.E. Smith, N.N. Zaitseva, B.W. Skelton, A.H. White, J. Organomet. Chem. 670 (2003) 170;
(b) M.I. Bruce, B.W. Skelton, A.H. White, N.N. Zaitseva, J. Organomet. Chem. 683 (2003) 398.
[11] R. Markby, I. Wender, R.A. Friedel, F.A. Cotton, H.W. Sternberg, J. Am. Chem. Soc. 80 (1958) 6529.
[12] G. Palyi, F. Piacenti, L. Marko, Inorg. Chim. Acta Rev. 4 (1970) 109.
[13] B.R. Penfold, B.H. Robinson, Acc. Chem. Res. 6 (1973) 73.
[14] D. Seyferth, Adv. Organomet. Chem. 14 (1976) 97.
[15] G. Schmid, Angew. Chem. 90 (1978) 417; Angew. Chem., Int. Ed. Engl. 17 (1978) 392.
[16] R.D.W. Kemmitt, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 5, Pergamon, Oxford, 1982, p. 162 (Chapter 34.3.9).
[17] C.E. Barnes, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 8, Pergamon, Oxford, 1995, p. 423 (Chapter 4.3.1.2).
[18] (a) R.J. Dellaca, B.R. Penfold, B.H. Robinson, W.T. Robinson, J.L. Spencer, Inorg. Chem. 9 (1970) 2204;
(b) R.J. Dellaca, B.R. Penfold, Inorg. Chem. 10 (1971) 1269.
[19] G.H. Worth, B.R. Robinson, J. Simpson, Organometallics 11 (1992) 501.
[20] D. Seyferth, R.J. Spohn, M.R. Churchill, K. Gold, F.J. Scholer, Organomet. Chem. 23 (1970) 237.
[21] A.B. Antonova, M.I. Bruce, B.G. Ellis, M. Gaudio, P.A. Humphrey, M. Jevric, G. Melino, B.K. Nicholson, G.J. Perkins, B.W. Skelton, B. Stapleton, A.H. White, N.N. Zaitseva, Chem. Commun. (2004) 960.
[22] (a) A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5 (1986) 1122;
(b) A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5 (1986) 1132;
(c) A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5 (1986) 1140.
[23] S. Aime, L. Milone, M. Valle, Inorg. Chim. Acta 18 (1976) 9.
[24] P. Yuan, M.G. Richmond, M. Schwarz, Inorg. Chem. 30 (1990) 679.
[25] J. Hlavaty, L. Kavan, M. Sticha, J. Chem. Soc., Perkin Trans. 1 (2002) 705.
[26] M.I. Bruce, B.W. Skelton, M.E. Smith, A.H. White, Aust. J. Chem. 52 (1999) 431.
[27] M.I. Bruce, K.A. Kramarczuk, G.J. Perkins, B.W. Skelton, A.H. White, N.N. Zaitseva, J. Cluster Sci. 15 (2004) 119.
[28] G. Balavoine, J. Collin, J.-J. Bonnet, G. Lavigne, J. Organomet. Chem. 280 (1985) 429.
[29] A.J. Downard, B.H. Robinson, J. Simpson, J. Organomet. Chem. 447 (1993) 281.
[30] D.N. Duffy, M.M. Kassis, A.D. Rae, Acta Crystallogr., Sect. C 47 (1991) 2054.
[31] F.-E. Hong, Y.-L. Huang, Y.-C. Cheng, K.-M. Chu, Appl. Organomet. Chem. 17 (2003) 458.
[32] D. Seyferth, C.S. Eschbach, M.O. Nestle, J. Organomet. Chem. 97 (1975) C11.
[33] S. Szafert, J.A. Gladysz, Chem. Rev. 103 (2003) 4175.
[34] W. Henderson, J.S. McIndoe, B.K. Nicholson, P.J. Dyson, J. Chem. Soc., Dalton Trans. (1998) 519.
[35] M.I. Bruce, B.K. Nicholson, O. bin Shawkataly, Inorg. Synth. 26 (1989) 325.
[36] R.J. Cross, M.F. Davidson, J. Chem. Soc., Dalton Trans. (1986) 411.
[37] M.I. Bruce, E. Horn, J.G. Matisons, M.R. Snow, Aust. J. Chem. 37 (1984) 1163.
[38] I.R. Whittall, M.G. Humphrey, S. Houbrechts, J. Maes, A. Persoons, S. Schmid, D.C.R. Hockless, J. Organomet. Chem. 544 (1997) 277.
[39] S.R. Hall, D.J. du Boulay, R. Olthof-Hazekamp (Eds.), The xtal 3.7 System, University of Western Australia, 2000.

[^0]: * Corresponding author. Fax: +61883034358.

 E-mail address: michael.bruce@adelaide.edu.au (M.I. Bruce).

